CIMS (isobutane), m/z (rel intensity) 245 (19, $M^+ + H$); HRMS m/z calcd for $C_9H_{19}O_2Si$ (M⁺ - C_4H_9) 187.1154, found 187.1154; $[\alpha]^{25}_{D}$ +40.0 (c 1.27, CH₂Cl₂). Also isolated by the chromatographic purification was the corresponding alcohol as an overreduction product (6% yield). To a solution of 15 (0.019 g, 0.078 mmol) in CH₂Cl₂ (2.5 mL) at 25 °C under nitrogen was added a solution of methyl (triphenylphosphoranylidene)acetate (0.026 g, 0.078 mmol; Aldrich) in CH₂Cl₂ (2.5 mL). The solution was then heated at reflux for 4 weeks. The mixture was poured into brine (5 mL), and the resulting mixture was extracted with CH_2Cl_2 (3 × 10 mL), dried (MgSO₄), and concentrated in vacuo, leaving a yellow oil. The E:Z ratio in the crude reaction mixture was 18:1 under these conditions. Flash chromatography on silica gel (99.5:0.5 hexane/ethyl acetate) gave 0.016 g (70%) of pure (2E)-(4R,5R)-10as a colorless oil having spectroscopic data identical with that of the racemic material prepared above but having $[\alpha]^{25}_D +25.0$ (c 0.58, CH₂Cl₂). Through use of the chiral NMR shift reagent tris(3-((heptafluoropropyl)hydroxymethylene)-(+)-camphorato)europium(III) (Eu(hfc)₃, Aldrich), none of the 4S,5S enantiomer could be detected. By addition of Eu(hfc)3 to samples of racemic 10, (4R.5R)-10, and mixtures of racemic 10 and (4R.5R)-10, the minimum detection limit for (4S,5S)-10 was found to be 0.5%, and therefore, an enantiomeric excess of at least 99% can be claimed for (4R.5R)-10.

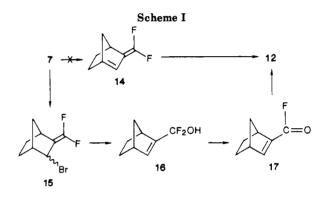
With shorter reaction times and with benzene as the solvent instead of CH2Cl2 in the final condensation step with the phosphonium ylide, significantly larger amounts of the 2Z isomer of (4R,5R)-10 were obtained. In an extreme case, when the condensation of 15 was done with trimethyl phosphonoacetate and potassium tert-butoxide in THF at -78 °C rather than with the vlide used above, the E and Z isomers were isolated in 18% and 47% yields, respectively. (2Z)-(4R,5R)-10: 1 H NMR (300 MHz, CDCl₃) δ 6.12 (dd, 1 H, J = 11.60, 10.43 Hz, CH=CHCO₂CH₃), 5.70 (dd, 1 H, J = 11.60, 0.85 Hz, CH=CHCO₂CH₃), 3.71 (s, 3 H, CO₂CH₃), ca. 3.7 (m, difficult to detect, overlapped with the strong CO₂CH₃ singlet, and probably strongly deshielded by the carbomethoxy group, 1 H, $CHCH_3$), 3.32 (dd, 1 H, J = 5.13, 5.13 Hz, CHOSi), 1.71 (qqd, 1 H, J = 6.80, 6.76, 5.13 Hz, $CH(CH_3)_2$), 1.05 (d, 3 H, J = 6.95 Hz, CH_3), 0.91 (s, 9 H, $C(CH_3)_3$), 0.87 (d, 3 H, J = 6.80 Hz, $CH(CH_3)CH_3$, 0.82 (d, 3 H, J = 6.76 Hz, CH(CH₃)CH₃), 0.036 (s, 3 H, Si(CH₃)CH₃), 0.023 (s, 3 H, Si- $(CH_3)CH_3$; EIMS, m/z (rel intensity) 300 (1, M⁺), 285 (4, M⁺ – CH₃), 257 (36, M⁺ – C₃H₇), 243 (100, M⁺ – C₄H₉); HRMS m/z calcd for C₁₂H₂₃O₃Si (M⁺ – C₄H₉) 243.1416, found 243.1414.

Acknowledgment. We thank Dr. James T. Carey for assistance with NMR data in the initial stages of this work and Dr. B. Plashko for assistance with MS data, and we express our gratitude to the National Institutes of Health for generous support of this research.

Alkaline Hydrolysis of 1,3-Dibromo-1,1-difluoroalkanes: A Two-Step Vinyl Carboxylation

Seth Elsheimer,* Darlene K. Slattery, Mariana Michael, Jennifer Weeks, and Kelly Topoleski

Department of Chemistry, University of Central Florida, Orlando, Florida 32816


Received January 3, 1989

In a recent attempt to prepare 3-(difluoromethylene)-cyclohexene, 1, we found that refluxing 1-(bromodifluoromethyl)-2-bromocyclohexanes, 2, with aqueous potassium hydroxide followed by acidic workup produced 1-cyclohexene-1-carboxylic acid, 3. Subsequent investigations showed that diene 1 is an intermediate but is converted to 3 under the reaction conditions.¹ Inasmuch

Table I. Dibromodifluoromethane-Alkene Adducts and Their Alkaline Hydrolysis Products

CF ₂ Br ₂ -alkene adduct	unsaturated acid	% yielda
2	3	93 ^b
$\mathrm{CH_{3}(CH_{2})_{3}CHBrCH_{2}CF_{2}Br} \atop 4}$	$CH_3(CH_2)_3CH$ = $CHCO_2H$	96
GF ₂ Br	CO2H	69
5	10	
Br CH ₃	CH ₃	53
6	11	
CF ₂ Br	CO2H	73
7 γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	12	
PhCH ₂ CHBrCH ₂ CF ₂ Br	PhCH=CHCH ₂ CO ₂ H 13	72

^aBased on unrecovered haloalkane. ^bReference 1.

as dibromides 2 were obtained from addition of CF_2Br_2 to cyclohexene, this reaction sequence amounts to a two-step vinyl carboxylation strategy. We therefore sought to demonstrate the generality of these conversions.

Table I summarizes the results of this study. Mono-, di-, and trisubstituted alkenes all give CuCl-initiated free-radical addition products with CF_2Br_2 . When the adducts were refluxed with aqueous potassium hydroxide and then acidified, α,β -unsaturated carboxylic acids were produced in good yield.

One noteworthy exception is 1,3-dibromo-1,1-difluoro-4-phenylbutane, 8, which gave 4-phenyl-3-butenoic acid, 13, upon alkaline hydrolysis. This presumably reflects a thermodynamic advantage for the alkene to be conjugated with the aryl ring rather than the carboxy carbonyl.²

The mechanistically significant observation that 7 is converted to 12 suggests the existence of an alternative pathway which does *not* involve a diene intermediate.³

⁽¹⁾ Elsheimer, S.; Michael, M.; Landavazo, A.; Slattery, D. K.; Weeks, J. J. Org. Chem. 1988, 53, 6151.

⁽²⁾ The isomerization of (E)-4-phenyl-2-butenoic acid to (E)-4-phenyl-3-butenoic acid was estimated to be exothermic by 1.64 kcal/mol at 150 °C. ASTM Chemical Thermodynamics and Energy Release Evaluation Program.

⁽³⁾ Elsheimer, S.; Slattery, D. K.; Weeks, J. J. Chem. Soc., Chem. Commun., submitted for publication.

⁽⁴⁾ Burton, D. J.; Kehoe, L. J. Tetrahedron Lett. 1966, 5163.

Although 1 was observed in the conversion of 2 to 3,1 an analogous route to 12 would require the bridgehead diene 14. We propose that initial dehydrobromination of 7 to 15⁵ is followed by S_N2' attack by hydroxide to yield the unstable difluoro alcohol 16. Spontaneous loss of HF produces 17, which further reacts to yield 12 (Scheme I).

Experimental Section

General Methods. All NMR spectra were obtained in CDCl₃ solutions at ambient temperature on a Varian Gemini 200 spectrometer. Chemical shifts (δ) are reported in parts per million downfield of internal tetramethylsilane. Infrared spectra were obtained from neat liquids or solutions as capillary films between KBr plates on a Perkin-Elmer 1420 ratio recording infrared spectrophotometer. All reagents and solvents were commercial samples used without purification. Elemental analyses were performed by Robertson Laboratory, Inc., Madison, NJ.

Addition of CF₂Br₂ to Alkenes. General Procedure. The procedure was patterned after that reported by Burton and Kehoe.⁴ A mixture of 300 mmol of CF₂Br₂, 150 mmol of olefin, 75 mmol of ethanolamine, 2 mmol of CuCl, and 150 mL of tert-butyl alcohol was refluxed for at least 24 h. Adducts were worked up as described previously for the isolation of 2.1

1,3-Dibromo-1,1-difluoroheptane (4): yield 23%; ¹H NMR δ 4.20 (quint, J = 6.4 Hz, 1 H, CHBr), 2.8–3.25 (mult, 2 H), 1.7–2.0 (mult, 2 H), 1.2–1.6 (mult, 4 H), 0.9 (t, 3 H); 13 C NMR δ 121.1 $(t, J_{FC} = 308 \text{ Hz}, CF_2Br), 52.9 (t, J_{FC} = 21.4 \text{ Hz}), 47.1, 38.4, 29.4,$ 22.1, 14.0; IR 2960, 2940, 2870, 1460, 1430, 1380, 1337, 1218, 1197, 1170, 1130, 1085, 1070, 1025, 995, 937, 915, 789, 766 cm⁻¹. Anal. Calcd for C₇H₁₂Br₂F₂: C, 28.60; H, 4.11. Found: C, 29.31; H, 4.25.

trans-1-(Bromodifluoromethyl)-2-bromocyclopentane (5): yield 20%; ¹H NMR δ 4.4 (ddd, J = 6.6 Hz, J' = 5.2 Hz, J'' = 4.7 Hz, 1 H, CHBr), 3.25 (mult, 2 H, CHCF₂Br), 1.7-2.4 (unresolved mults, 6 H); 13 C NMR δ 124.8 (t, J_{FC} = 309 Hz, CF₂Br), 62.3 (t, $J_{FC} = 20.2 \text{ Hz}$, C(1)), 48.0, 38.8, 28.0 (d, J = 2.6 Hz), 24.1; IR 2959, 2866, 1775, 1445, 1347, 1302, 1212, 1095, 1061, 1028, 985, 958, 908, 865, 769, 703 cm⁻¹. Anal. Calcd for C₆H₈Br₂F₂: C, 25.93; H, 2.90. Found: C, 26.52; H, 2.92.

1-Bromo-1-methyl-2-(bromodifluoromethyl)cyclohexane (6): yield 25%; ¹H NMR δ 2.99 (ddt, J = 22.6 Hz, J' = 9.1 Hz, $J'' = 3.7 \text{ Hz}, 1 \text{ H}, \text{CHCF}_2\text{Br}), 2.20 \text{ (t, } J = 10.1 \text{ Hz}, 2 \text{ H)}, 19.3 \text{ (t, } J = 10.1 \text{ Hz}, 2 \text{ H)}, 19.3 \text{ (t, } J = 10.1 \text{ Hz}, 2 \text{ H)}$ $J = 2 \text{ Hz}, 3 \text{ H}, \text{CH}_3$) 1.88–1.39 (complex mults, 6 H); ¹³C NMR δ 125.4 (t, J_{FC} = 316 Hz, CF₂Br), 65.6, 60.4 (dd, J_{FC} = 18.3 Hz, $J_{FC} = 15.3 \text{ Hz}$), 46.3, 28.6, 27.1 (d, $J_{FC} = 2.6 \text{ Hz}$), 24.0, 23.5; IR 3006 (w), 2932, 2852, 1742, 1705, 1442, 1358, 1215, 1142, 1098, 908, 758 cm⁻¹

trans-2-(Bromodifluoromethyl)-3-bromobicyclo[2.2.1]heptanes (7). Two isomers were produced in 47% total yield. The ratio of 7a (exo CF₂Br) to 7b (endo CF₂Br) was 4.4 to 1: IR 2960, 2875, 1470 (w), 1450, 1350, 1265, 1250, 1235, 1220, 1205, 1190, 1175, 1150, 1115, 1090 (s), 1020, 980, 965, 940, 900, 835, 815, 800, 765, 745, 675 cm⁻¹; ¹H NMR δ 4.16 (t, J = 5 Hz, 7a, CHBr, 0.815 H), 4.03 (dd, J = 7.7 Hz, J' = 2.6 Hz, 7b, CHBr, 0.185 H), 2.9–2.3 (mult, 3 H), 2.1–1.9 (mult, 1 H), 1.8–1.5 (mult, 3 H), 1.4–1.2 (mult, 2 H); 13 C NMR **7a** δ 123.5 (t, J_{FC} = 309 Hz), 65.2 (t, J_{FC} = 20.5 Hz), 52.0, 44.5, 40.0, 36.0, 29.8, 23.8; **7b** δ 122.6 (t, J_{FC} = 312 Hz), 60.6 (t, $J_{FC} = 19.8$ Hz), 51.2, 48.5, 41.0, 35.4, 30.3, 27.1. Anal. Calcd for C₈H₁₀Br₂F₂: C, 31.61; H, 3.32. Found: C, 31.88; H, 3.32.

1,1-Difluoro-1,3-dibromo-4-phenylbutane (8). The standard procedure described above produced a mixture of 8 and unreacted allylbenzene. Pure 8 was isolated in 33% yield by flash chromatography on silica gel with hexane elution: ¹H NMR δ 2.9-3.4 (mult, 4 H), 4.35 (quintet, 1 H, CHBr), 7.2-7.5 (mult, 5 H); ¹³C NMR δ 137.7, 129.9, 129.3, 128.0, 121.3 (t, J_{FC} = 308 Hz, CF₂Br), 51.9 (t, $J_{FC} = 21.5 \text{ Hz}$), 46.5, 45.3; IR 3075 (w), 3055 (w), 3020, 2915, 1600, 1493, 1450, 1370, 1340, 1307, 1260, 1200 (s), 1165, 1104 (s), 1077, 1028, 980, 940, 917, 860, 1165, 1104 (s), 1077, 1028, 980, 940, 917, 860, 770, 745, 700 (s), 647 cm⁻¹

Reaction of CF₂Br₂-Alkene Adducts with Potassium Hydroxide. General Procedure. Into a 10-mL screw-topped test tube were placed 5 mmol of KOH, 2 mL of deionized water, 1 mmol of the dibromodifluoro compound, and a small stirring magnet. The vessel was closed, and the lower half was suspended in an oil bath while the mixture was stirred and heated until it appeared homogeneous. Afterward the cooled reaction mixture was extracted with three 2-mL portions of chloroform to remove any unreacted alkyl halide. The reaction mixture was then acidified wth 3 M HCl and extracted with three 2-mL portions of chloroform. These second chloroform extracts were dried over anhydrous calcium sulfate and rotary evaporated to give the carboxylic acid.

2-Heptenoic Acid (9). A reaction of 4 with KOH was carried out as described above for 7 h at 130-140 °C to yield 96% 9: 1H NMR δ 10.62 (br s, 1 H, CO₂H), 7.10 (dt, J = 15.6 Hz, J' = 7.1Hz, 1 H), 5.82 (d, J = 15.6 Hz, 1 H), 2.24 (quart., J = 7.1 Hz, 2 H), 1.65–1.25 (mult, 4 H), 0.92 (t, J = 7 Hz); the ¹³C NMR agreed with the liteature; IR 3300-2500 (br, OH), 2946, 2912, 2855, 2665, 1095, (s, C=O), 1642 (C=C), 1419, 1285, 1225, 981, 925 cm⁻¹.

1-Cyclopentene-1-carboxylic Acid (10). A reaction of 5 with KOH was carried out as described above for 6.5 h at 140 °C to yield 69% 10: mp 117-119 °C (lit.7 mp 119-120 °C); the ¹H NMR and IR spectra agreed with the literature;⁷ ¹³C NMR δ 171.5, 147.4, 136.5, 33.7, 31.1, 23.2.

2-Methyl-1-cyclohexene-1-carboxylic Acid (11). Reaction of 6 with KOH was carried out as described above for 41 h at 160 °C to yield 65% 11. The crude material was recrystallized from methanol and water to give white needles, mp 84-85 °C. The ¹H NMR, ¹³C NMR, and IR spectra agreed with those previously reported.8

Bicyclo[2.2.1]hept-2-ene-2-carboxylic Acid (12). Reaction of 7 with KOH was carried out as described above for 17 h at 130 °C to yield 73% 12. The ¹H NMR and IR spectra were identical to those previously reported:⁹ ¹³C NMR δ 171.1 (CO₂H), 150.5, 140.9, 48.4, 44.0, 41.8, 24.7, 24.6.

4-Phenyl-3-butenoic Acid (13). Reaction of 8 with KOH was carried out as described above for 5 h at 130 °C to yield 72% 13. The ¹H NMR spectrum agreed with that previously reported ¹⁰ and indicated an E:Z ratio of 5:1: IR 3400-2400 (br OH), 2890, 1695 (C=O), 1647 (C=C), 1457, 1375, 1290, 1220, 973, 912, 736, 680 cm⁻¹.

Acknowledgment. We gratefully acknowledge financial support from the National Science Foundaton through Instrument Grant No. CHE-8608881 and from the University of Central Florida Division of Sponsored Research through Research Grant Nos. 11-64-907 and 11-64-908. We also acknowledge Prof. J. T. Gupton for helpful discussions and Prof. G. R. Hertel for carrying out the thermochemical calculations.

Kinetic Medium Effects in N-Cyclohexyl-2-pyrrolidone-Water Mixtures. Evidence for a Low Critical Hydrophobic **Interaction Concentration**

Frank R. Mooijman and Jan B. F. N. Engberts*

Department of Organic Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

Received February 2, 1989

Binary mixtures of water with a relatively hydrophobic cosolvent have been defined as typically aqueous (TA) solutions.1 Sufficiently hydrophobic solutes, dissolved in

⁽⁵⁾ The analogous dehydrohalogenation of 3-bromo-2-(trichloromethyl)bicyclo[2.2.1]heptane was reported to yield 3-bromo-2-(dichloromethylene)bicyclo[2.2.1]heptane as the exclusive product. Tobler, E.; Foster, D. J. J. Org. Chem. 1964, 29, 2839.

⁽⁶⁾ Stavitsky, G. B.; Ellis, P. D.; Namikawa, K.; Maciel, G. E. J. Chem.

Phys. 1968, 49, 2395.
(7) Trost, B. M.; Whitman, P. J. J. Org. Chem. 1974, 96, 7421.
(8) Dieter, K. R.; Lin, Y. J.; Dieter, J. W. J. Org. Chem. 1984, 49, 3183.
(9) Finnegan, R. A.; McNees, R. S. J. Org. Chem. 1964, 29, 3234. (10) Glover, G. I.; Mariano, P. S.; Cheowtirakul, S. Sep. Sci. 1976, 11,